theorem lesucid (a: nat): $ a <= suc a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leeq2 | a + 1 = suc a -> (a <= a + 1 <-> a <= suc a) |
|
2 | add12 | a + 1 = suc a |
|
3 | 1, 2 | ax_mp | a <= a + 1 <-> a <= suc a |
4 | leaddid1 | a <= a + 1 |
|
5 | 3, 4 | mpbi | a <= suc a |