theorem leaddid2 (a b: nat): $ a <= b + a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leeq | a = a -> a + b = b + a -> (a <= a + b <-> a <= b + a) |
|
2 | eqid | a = a |
|
3 | 1, 2 | ax_mp | a + b = b + a -> (a <= a + b <-> a <= b + a) |
4 | addcom | a + b = b + a |
|
5 | 3, 4 | ax_mp | a <= a + b <-> a <= b + a |
6 | leaddid1 | a <= a + b |
|
7 | 5, 6 | mpbi | a <= b + a |