Theorem leaddid2 | index | src |

theorem leaddid2 (a b: nat): $ a <= b + a $;
StepHypRefExpression
1 leeq
a = a -> a + b = b + a -> (a <= a + b <-> a <= b + a)
2 eqid
a = a
3 1, 2 ax_mp
a + b = b + a -> (a <= a + b <-> a <= b + a)
4 addcom
a + b = b + a
5 3, 4 ax_mp
a <= a + b <-> a <= b + a
6 leaddid1
a <= a + b
7 5, 6 mpbi
a <= b + a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)