Theorem ltirr | index | src |

theorem ltirr (a: nat): $ ~a < a $;
StepHypRefExpression
1 bitr
(0 < 0 <-> 0 + a < 0 + a) -> (0 + a < 0 + a <-> a < a) -> (0 < 0 <-> a < a)
2 ltadd1
0 < 0 <-> 0 + a < 0 + a
3 1, 2 ax_mp
(0 + a < 0 + a <-> a < a) -> (0 < 0 <-> a < a)
4 lteq
0 + a = a -> 0 + a = a -> (0 + a < 0 + a <-> a < a)
5 add01
0 + a = a
6 4, 5 ax_mp
0 + a = a -> (0 + a < 0 + a <-> a < a)
7 6, 5 ax_mp
0 + a < 0 + a <-> a < a
8 3, 7 ax_mp
0 < 0 <-> a < a
9 lt02
~0 < 0
10 8, 9 mtbi
~a < a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)