theorem lteq (_a1 _a2 _b1 _b2: nat): $ _a1 = _a2 -> _b1 = _b2 -> (_a1 < _b1 <-> _a2 < _b2) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anl | _a1 = _a2 /\ _b1 = _b2 -> _a1 = _a2 |
|
| 2 | anr | _a1 = _a2 /\ _b1 = _b2 -> _b1 = _b2 |
|
| 3 | 1, 2 | lteqd | _a1 = _a2 /\ _b1 = _b2 -> (_a1 < _b1 <-> _a2 < _b2) |
| 4 | 3 | exp | _a1 = _a2 -> _b1 = _b2 -> (_a1 < _b1 <-> _a2 < _b2) |