Theorem ltadd1 | index | src |

theorem ltadd1 (a b c: nat): $ a < b <-> a + c < b + c $;
StepHypRefExpression
1 bitr
(a < b <-> suc a + c <= b + c) -> (suc a + c <= b + c <-> a + c < b + c) -> (a < b <-> a + c < b + c)
2 leadd1
suc a <= b <-> suc a + c <= b + c
3 2 conv lt
a < b <-> suc a + c <= b + c
4 1, 3 ax_mp
(suc a + c <= b + c <-> a + c < b + c) -> (a < b <-> a + c < b + c)
5 leeq1
suc a + c = suc (a + c) -> (suc a + c <= b + c <-> suc (a + c) <= b + c)
6 5 conv lt
suc a + c = suc (a + c) -> (suc a + c <= b + c <-> a + c < b + c)
7 addS1
suc a + c = suc (a + c)
8 6, 7 ax_mp
suc a + c <= b + c <-> a + c < b + c
9 4, 8 ax_mp
a < b <-> a + c < b + c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)