theorem ltadd1 (a b c: nat): $ a < b <-> a + c < b + c $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a < b <-> suc a + c <= b + c) -> (suc a + c <= b + c <-> a + c < b + c) -> (a < b <-> a + c < b + c) |
2 |
|
leadd1 |
suc a <= b <-> suc a + c <= b + c |
3 |
2 |
conv lt |
a < b <-> suc a + c <= b + c |
4 |
1, 3 |
ax_mp |
(suc a + c <= b + c <-> a + c < b + c) -> (a < b <-> a + c < b + c) |
5 |
|
leeq1 |
suc a + c = suc (a + c) -> (suc a + c <= b + c <-> suc (a + c) <= b + c) |
6 |
5 |
conv lt |
suc a + c = suc (a + c) -> (suc a + c <= b + c <-> a + c < b + c) |
7 |
|
addS1 |
suc a + c = suc (a + c) |
8 |
6, 7 |
ax_mp |
suc a + c <= b + c <-> a + c < b + c |
9 |
4, 8 |
ax_mp |
a < b <-> a + c < b + c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)