Theorem ltleaddd | index | src |

theorem ltleaddd (G: wff) (a b c d: nat):
  $ G -> a < b $ >
  $ G -> c <= d $ >
  $ G -> a + c < b + d $;
StepHypRefExpression
1 ltadd1
a < b <-> a + c < b + c
2 hyp h1
G -> a < b
3 1, 2 sylib
G -> a + c < b + c
4 leadd2
c <= d <-> b + c <= b + d
5 hyp h2
G -> c <= d
6 4, 5 sylib
G -> b + c <= b + d
7 3, 6 ltletrd
G -> a + c < b + d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)