Theorem ltletrd | index | src |

theorem ltletrd (G: wff) (a b c: nat):
  $ G -> a < b $ >
  $ G -> b <= c $ >
  $ G -> a < c $;
StepHypRefExpression
1 hyp h1
G -> a < b
2 1 conv lt
G -> suc a <= b
3 hyp h2
G -> b <= c
4 2, 3 letrd
G -> suc a <= c
5 4 conv lt
G -> a < c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)