theorem letrd (G: wff) (a b c: nat):
$ G -> a <= b $ >
$ G -> b <= c $ >
$ G -> a <= c $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h1 |
G -> a <= b |
2 |
|
hyp h2 |
G -> b <= c |
3 |
2 |
anwl |
G /\ a + x = b -> b <= c |
4 |
|
addeq2 |
z = x + y -> a + z = a + (x + y) |
5 |
4 |
eqeq1d |
z = x + y -> (a + z = c <-> a + (x + y) = c) |
6 |
5 |
iexe |
a + (x + y) = c -> E. z a + z = c |
7 |
6 |
conv le |
a + (x + y) = c -> a <= c |
8 |
|
addass |
a + x + y = a + (x + y) |
9 |
|
anlr |
G /\ a + x = b /\ b + y = c -> a + x = b |
10 |
9 |
addeq1d |
G /\ a + x = b /\ b + y = c -> a + x + y = b + y |
11 |
|
anr |
G /\ a + x = b /\ b + y = c -> b + y = c |
12 |
10, 11 |
eqtrd |
G /\ a + x = b /\ b + y = c -> a + x + y = c |
13 |
8, 12 |
syl5eqr |
G /\ a + x = b /\ b + y = c -> a + (x + y) = c |
14 |
7, 13 |
syl |
G /\ a + x = b /\ b + y = c -> a <= c |
15 |
14 |
eexda |
G /\ a + x = b -> E. y b + y = c -> a <= c |
16 |
15 |
conv le |
G /\ a + x = b -> b <= c -> a <= c |
17 |
3, 16 |
mpd |
G /\ a + x = b -> a <= c |
18 |
17 |
eexda |
G -> E. x a + x = b -> a <= c |
19 |
18 |
conv le |
G -> a <= b -> a <= c |
20 |
1, 19 |
mpd |
G -> a <= c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)