Theorem iexe | index | src |

theorem iexe {x: nat} (a: nat) (b: wff x) (c: wff):
  $ x = a -> (b <-> c) $ >
  $ c -> E. x b $;
StepHypRefExpression
1 hyp e
x = a -> (b <-> c)
2 1 anwr
c /\ x = a -> (b <-> c)
3 anl
c /\ x = a -> c
4 2, 3 mpbird
c /\ x = a -> b
5 4 iexde
c -> E. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)