theorem iexe {x: nat} (a: nat) (b: wff x) (c: wff):
$ x = a -> (b <-> c) $ >
$ c -> E. x b $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp e | x = a -> (b <-> c) |
|
| 2 | 1 | anwr | c /\ x = a -> (b <-> c) |
| 3 | anl | c /\ x = a -> c |
|
| 4 | 2, 3 | mpbird | c /\ x = a -> b |
| 5 | 4 | iexde | c -> E. x b |