theorem ealdeh {x: nat} (a: nat) (G b c: wff x):
$ F/ x G $ >
$ F/ x c $ >
$ G /\ x = a -> b -> c $ >
$ G -> A. x b -> c $;
Step | Hyp | Ref | Expression |
1 |
|
exnal |
E. x ~b <-> ~A. x b |
2 |
|
hyp h1 |
F/ x G |
3 |
|
hyp h2 |
F/ x c |
4 |
3 |
nfnot |
F/ x ~c |
5 |
2, 4 |
nfan |
F/ x G /\ ~c |
6 |
|
hyp e |
G /\ x = a -> b -> c |
7 |
6 |
con3d |
G /\ x = a -> ~c -> ~b |
8 |
7 |
imp |
G /\ x = a /\ ~c -> ~b |
9 |
8 |
anrasss |
G /\ ~c /\ x = a -> ~b |
10 |
5, 9 |
iexdeh |
G /\ ~c -> E. x ~b |
11 |
1, 10 |
sylib |
G /\ ~c -> ~A. x b |
12 |
11 |
exp |
G -> ~c -> ~A. x b |
13 |
12 |
con4d |
G -> A. x b -> c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12)