theorem iexdeh {x: nat} (a: nat) (G b: wff x):
$ F/ x G $ >
$ G /\ x = a -> b $ >
$ G -> E. x b $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax_6 | E. x x = a |
|
| 2 | exim | A. x (x = a -> b) -> E. x x = a -> E. x b |
|
| 3 | hyp h | F/ x G |
|
| 4 | hyp e | G /\ x = a -> b |
|
| 5 | 4 | exp | G -> x = a -> b |
| 6 | 3, 5 | ialdh | G -> A. x (x = a -> b) |
| 7 | 2, 6 | syl | G -> E. x x = a -> E. x b |
| 8 | 1, 7 | mpi | G -> E. x b |