Theorem iexdeh | index | src |

theorem iexdeh {x: nat} (a: nat) (G b: wff x):
  $ F/ x G $ >
  $ G /\ x = a -> b $ >
  $ G -> E. x b $;
StepHypRefExpression
1 ax_6
E. x x = a
2 exim
A. x (x = a -> b) -> E. x x = a -> E. x b
3 hyp h
F/ x G
4 hyp e
G /\ x = a -> b
5 4 exp
G -> x = a -> b
6 3, 5 ialdh
G -> A. x (x = a -> b)
7 2, 6 syl
G -> E. x x = a -> E. x b
8 1, 7 mpi
G -> E. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)