Theorem ealieh | index | src |

theorem ealieh (c: wff) {x: nat} (a: nat) (b: wff x):
  $ F/ x c $ >
  $ x = a -> b -> c $ >
  $ A. x b -> c $;
StepHypRefExpression
1 nfv
F/ x T.
2 hyp h
F/ x c
3 hyp e
x = a -> b -> c
4 3 anwr
T. /\ x = a -> b -> c
5 1, 2, 4 ealdeh
T. -> A. x b -> c
6 5 trud
A. x b -> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)