theorem ealieh (c: wff) {x: nat} (a: nat) (b: wff x):
$ F/ x c $ >
$ x = a -> b -> c $ >
$ A. x b -> c $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | F/ x T. |
|
| 2 | hyp h | F/ x c |
|
| 3 | hyp e | x = a -> b -> c |
|
| 4 | 3 | anwr | T. /\ x = a -> b -> c |
| 5 | 1, 2, 4 | ealdeh | T. -> A. x b -> c |
| 6 | 5 | trud | A. x b -> c |