theorem ealieh (c: wff) {x: nat} (a: nat) (b: wff x): $ F/ x c $ > $ x = a -> b -> c $ > $ A. x b -> c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | F/ x T. |
|
2 | hyp h | F/ x c |
|
3 | hyp e | x = a -> b -> c |
|
4 | 3 | anwr | T. /\ x = a -> b -> c |
5 | 1, 2, 4 | ealdeh | T. -> A. x b -> c |
6 | 5 | trud | A. x b -> c |