theorem ealde (c: wff) {x: nat} (G: wff) (a: nat) (b: wff x):
$ G /\ x = a -> b -> c $ >
$ G -> A. x b -> c $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | F/ x G |
|
| 2 | nfv | F/ x c |
|
| 3 | hyp e | G /\ x = a -> b -> c |
|
| 4 | 1, 2, 3 | ealdeh | G -> A. x b -> c |