Theorem ealde | index | src |

theorem ealde (c: wff) {x: nat} (G: wff) (a: nat) (b: wff x):
  $ G /\ x = a -> b -> c $ >
  $ G -> A. x b -> c $;
StepHypRefExpression
1 nfv
F/ x G
2 nfv
F/ x c
3 hyp e
G /\ x = a -> b -> c
4 1, 2, 3 ealdeh
G -> A. x b -> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)