Theorem anrasss | index | src |

theorem anrasss (a b c d: wff): $ a /\ b /\ c -> d $ > $ a /\ c /\ b -> d $;
StepHypRefExpression
1 hyp h
a /\ b /\ c -> d
2 anll
a /\ c /\ b -> a
3 anr
a /\ c /\ b -> b
4 2, 3 iand
a /\ c /\ b -> a /\ b
5 anlr
a /\ c /\ b -> c
6 1, 4, 5 sylan
a /\ c /\ b -> d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)