Theorem con4d | index | src |

theorem con4d (a b c: wff): $ a -> ~b -> ~c $ > $ a -> c -> b $;
StepHypRefExpression
1 ax_3
(~b -> ~c) -> c -> b
2 hyp h
a -> ~b -> ~c
3 1, 2 syl
a -> c -> b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)