Theorem
mtbi
≪
|
index
|
src
|
≫
theorem mtbi (a b: wff): $ a <-> b $ > $ ~a $ > $ ~b $;
Step
Hyp
Ref
Expression
1
bi2
(a <-> b) -> b -> a
2
hyp h1
a <-> b
3
1
,
2
ax_mp
b -> a
4
hyp h2
~a
5
3
,
4
mt
~b
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)