Theorem
mtbir
≪
|
index
|
src
|
≫
theorem mtbir (a b: wff): $ b <-> a $ > $ ~a $ > $ ~b $;
Step
Hyp
Ref
Expression
1
bi1
(b <-> a) -> b -> a
2
hyp h1
b <-> a
3
1
,
2
ax_mp
b -> a
4
hyp h2
~a
5
3
,
4
mt
~b
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)