theorem lt02 (a: nat): $ ~a < 0 $;
Step | Hyp | Ref | Expression |
1 |
|
con3 |
(a < 0 -> suc a = 0) -> ~suc a = 0 -> ~a < 0 |
2 |
|
bi1 |
(a < 0 <-> suc a = 0) -> a < 0 -> suc a = 0 |
3 |
|
le02 |
suc a <= 0 <-> suc a = 0 |
4 |
3 |
conv lt |
a < 0 <-> suc a = 0 |
5 |
2, 4 |
ax_mp |
a < 0 -> suc a = 0 |
6 |
1, 5 |
ax_mp |
~suc a = 0 -> ~a < 0 |
7 |
|
peano1 |
suc a != 0 |
8 |
7 |
conv ne |
~suc a = 0 |
9 |
6, 8 |
ax_mp |
~a < 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)