Theorem lt02 | index | src |

theorem lt02 (a: nat): $ ~a < 0 $;
StepHypRefExpression
1 con3
(a < 0 -> suc a = 0) -> ~suc a = 0 -> ~a < 0
2 bi1
(a < 0 <-> suc a = 0) -> a < 0 -> suc a = 0
3 le02
suc a <= 0 <-> suc a = 0
4 3 conv lt
a < 0 <-> suc a = 0
5 2, 4 ax_mp
a < 0 -> suc a = 0
6 1, 5 ax_mp
~suc a = 0 -> ~a < 0
7 peano1
suc a != 0
8 7 conv ne
~suc a = 0
9 6, 8 ax_mp
~a < 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)