theorem eqle (a b: nat): $ a = b -> a <= b $;
Step | Hyp | Ref | Expression |
1 |
|
leid |
a <= a |
2 |
|
leeq2 |
a = b -> (a <= a <-> a <= b) |
3 |
1, 2 |
mpbii |
a = b -> a <= b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_12),
axs_peano
(addeq,
add0)