Theorem leid | index | src |

theorem leid (a: nat): $ a <= a $;
StepHypRefExpression
1 addeq2
x = 0 -> a + x = a + 0
2 1 eqeq1d
x = 0 -> (a + x = a <-> a + 0 = a)
3 2 iexe
a + 0 = a -> E. x a + x = a
4 3 conv le
a + 0 = a -> a <= a
5 add0
a + 0 = a
6 4, 5 ax_mp
a <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12), axs_peano (addeq, add0)