Theorem
mpbii
≪
|
index
|
src
|
≫
theorem mpbii (a b c: wff): $ b $ > $ a -> (b <-> c) $ > $ a -> c $;
Step
Hyp
Ref
Expression
1
hyp h2
a -> (b <-> c)
2
hyp h1
b
3
2
a1i
a -> b
4
1
,
3
mpbid
a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)