Step | Hyp | Ref | Expression |
1 |
|
eqeq1 |
y = a -> (y = 0 <-> a = 0) |
2 |
1 |
noteqd |
y = a -> (~y = 0 <-> ~a = 0) |
3 |
2 |
conv ne |
y = a -> (y != 0 <-> a != 0) |
4 |
|
eqeq1 |
y = a -> (y = suc x <-> a = suc x) |
5 |
4 |
exeqd |
y = a -> (E. x y = suc x <-> E. x a = suc x) |
6 |
3, 5 |
imeqd |
y = a -> (y != 0 -> E. x y = suc x <-> a != 0 -> E. x a = suc x) |
7 |
|
eqeq1 |
y = 0 -> (y = 0 <-> 0 = 0) |
8 |
7 |
noteqd |
y = 0 -> (~y = 0 <-> ~0 = 0) |
9 |
8 |
conv ne |
y = 0 -> (y != 0 <-> ~0 = 0) |
10 |
|
eqeq1 |
y = 0 -> (y = suc x <-> 0 = suc x) |
11 |
10 |
exeqd |
y = 0 -> (E. x y = suc x <-> E. x 0 = suc x) |
12 |
9, 11 |
imeqd |
y = 0 -> (y != 0 -> E. x y = suc x <-> ~0 = 0 -> E. x 0 = suc x) |
13 |
|
eqeq1 |
y = z -> (y = 0 <-> z = 0) |
14 |
13 |
noteqd |
y = z -> (~y = 0 <-> ~z = 0) |
15 |
14 |
conv ne |
y = z -> (y != 0 <-> ~z = 0) |
16 |
|
eqeq1 |
y = z -> (y = suc x <-> z = suc x) |
17 |
16 |
exeqd |
y = z -> (E. x y = suc x <-> E. x z = suc x) |
18 |
15, 17 |
imeqd |
y = z -> (y != 0 -> E. x y = suc x <-> ~z = 0 -> E. x z = suc x) |
19 |
|
eqeq1 |
y = suc z -> (y = 0 <-> suc z = 0) |
20 |
19 |
noteqd |
y = suc z -> (~y = 0 <-> ~suc z = 0) |
21 |
20 |
conv ne |
y = suc z -> (y != 0 <-> ~suc z = 0) |
22 |
|
eqeq1 |
y = suc z -> (y = suc x <-> suc z = suc x) |
23 |
22 |
exeqd |
y = suc z -> (E. x y = suc x <-> E. x suc z = suc x) |
24 |
21, 23 |
imeqd |
y = suc z -> (y != 0 -> E. x y = suc x <-> ~suc z = 0 -> E. x suc z = suc x) |
25 |
|
absurdr |
0 = 0 -> ~0 = 0 -> E. x 0 = suc x |
26 |
|
eqid |
0 = 0 |
27 |
25, 26 |
ax_mp |
~0 = 0 -> E. x 0 = suc x |
28 |
|
suceq |
x = z -> suc x = suc z |
29 |
28 |
eqeq2d |
x = z -> (suc z = suc x <-> suc z = suc z) |
30 |
29 |
iexe |
suc z = suc z -> E. x suc z = suc x |
31 |
|
eqid |
suc z = suc z |
32 |
30, 31 |
ax_mp |
E. x suc z = suc x |
33 |
32 |
a1i |
~suc z = 0 -> E. x suc z = suc x |
34 |
33 |
a1i |
(~z = 0 -> E. x z = suc x) -> ~suc z = 0 -> E. x suc z = suc x |
35 |
6, 12, 18, 24, 27, 34 |
ind |
a != 0 -> E. x a = suc x |
36 |
|
sucne0 |
a = suc x -> a != 0 |
37 |
36 |
eex |
E. x a = suc x -> a != 0 |
38 |
35, 37 |
ibii |
a != 0 <-> E. x a = suc x |