theorem lesub1i (a b c: nat): $ a <= b -> a - c <= b - c $;
| Step | Hyp | Ref | Expression |
| 1 |
|
leadd1 |
a - c <= b - c <-> a - c + c <= b - c + c |
| 2 |
|
npcan |
c <= a -> a - c + c = a |
| 3 |
2 |
anwl |
c <= a /\ a <= b -> a - c + c = a |
| 4 |
|
npcan |
c <= b -> b - c + c = b |
| 5 |
|
letr |
c <= a -> a <= b -> c <= b |
| 6 |
5 |
imp |
c <= a /\ a <= b -> c <= b |
| 7 |
4, 6 |
syl |
c <= a /\ a <= b -> b - c + c = b |
| 8 |
3, 7 |
leeqd |
c <= a /\ a <= b -> (a - c + c <= b - c + c <-> a <= b) |
| 9 |
|
anr |
c <= a /\ a <= b -> a <= b |
| 10 |
8, 9 |
mpbird |
c <= a /\ a <= b -> a - c + c <= b - c + c |
| 11 |
1, 10 |
sylibr |
c <= a /\ a <= b -> a - c <= b - c |
| 12 |
11 |
exp |
c <= a -> a <= b -> a - c <= b - c |
| 13 |
|
le01 |
0 <= b - c |
| 14 |
|
nlesubeq0 |
~c <= a -> a - c = 0 |
| 15 |
14 |
leeq1d |
~c <= a -> (a - c <= b - c <-> 0 <= b - c) |
| 16 |
13, 15 |
mpbiri |
~c <= a -> a - c <= b - c |
| 17 |
16 |
a1d |
~c <= a -> a <= b -> a - c <= b - c |
| 18 |
12, 17 |
cases |
a <= b -> a - c <= b - c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)