theorem lesub1i (a b c: nat): $ a <= b -> a - c <= b - c $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | leadd1 | a - c <= b - c <-> a - c + c <= b - c + c | 
        
          | 2 |  | npcan | c <= a -> a - c + c = a | 
        
          | 3 | 2 | anwl | c <= a /\ a <= b -> a - c + c = a | 
        
          | 4 |  | npcan | c <= b -> b - c + c = b | 
        
          | 5 |  | letr | c <= a -> a <= b -> c <= b | 
        
          | 6 | 5 | imp | c <= a /\ a <= b -> c <= b | 
        
          | 7 | 4, 6 | syl | c <= a /\ a <= b -> b - c + c = b | 
        
          | 8 | 3, 7 | leeqd | c <= a /\ a <= b -> (a - c + c <= b - c + c <-> a <= b) | 
        
          | 9 |  | anr | c <= a /\ a <= b -> a <= b | 
        
          | 10 | 8, 9 | mpbird | c <= a /\ a <= b -> a - c + c <= b - c + c | 
        
          | 11 | 1, 10 | sylibr | c <= a /\ a <= b -> a - c <= b - c | 
        
          | 12 | 11 | exp | c <= a -> a <= b -> a - c <= b - c | 
        
          | 13 |  | le01 | 0 <= b - c | 
        
          | 14 |  | nlesubeq0 | ~c <= a -> a - c = 0 | 
        
          | 15 | 14 | leeq1d | ~c <= a -> (a - c <= b - c <-> 0 <= b - c) | 
        
          | 16 | 13, 15 | mpbiri | ~c <= a -> a - c <= b - c | 
        
          | 17 | 16 | a1d | ~c <= a -> a <= b -> a - c <= b - c | 
        
          | 18 | 12, 17 | cases | a <= b -> a - c <= b - c | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      peano5,
      addeq,
      add0,
      addS)