Theorem nlesubeq0 | index | src |

theorem nlesubeq0 (a b: nat): $ ~b <= a -> a - b = 0 $;
StepHypRefExpression
1 leaddid1
b <= b + x
2 leeq2
b + x = a -> (b <= b + x <-> b <= a)
3 1, 2 mpbii
b + x = a -> b <= a
4 absurd
~b <= a -> b <= a -> x = 0
5 3, 4 syl5
~b <= a -> b + x = a -> x = 0
6 5 eqthe0abd
~b <= a -> the {x | b + x = a} = 0
7 6 conv sub
~b <= a -> a - b = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (addeq)