theorem eqthe0abd (G: wff) {x: nat} (p: wff x):
$ G -> p -> x = 0 $ >
$ G -> the {x | p} = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
elab |
y e. {x | p} <-> [y / x] p |
2 |
|
hyp h |
G -> p -> x = 0 |
3 |
2 |
iald |
G -> A. x (p -> x = 0) |
4 |
|
nfsb1 |
F/ x [y / x] p |
5 |
|
nfv |
F/ x y = 0 |
6 |
4, 5 |
nfim |
F/ x [y / x] p -> y = 0 |
7 |
|
sbq |
x = y -> (p <-> [y / x] p) |
8 |
|
eqeq1 |
x = y -> (x = 0 <-> y = 0) |
9 |
7, 8 |
imeqd |
x = y -> (p -> x = 0 <-> [y / x] p -> y = 0) |
10 |
6, 9 |
ealeh |
A. x (p -> x = 0) -> [y / x] p -> y = 0 |
11 |
3, 10 |
rsyl |
G -> [y / x] p -> y = 0 |
12 |
1, 11 |
syl5bi |
G -> y e. {x | p} -> y = 0 |
13 |
12 |
eqthe0d |
G -> the {x | p} = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)