Step | Hyp | Ref | Expression |
1 |
|
nfv |
F/ y a = the A |
2 |
|
nfv |
F/ y A == {x | x = a} |
3 |
|
nfex1 |
F/ y E. y A == {x | x = y} |
4 |
3 |
nfnot |
F/ y ~E. y A == {x | x = y} |
5 |
|
nfv |
F/ y a = 0 |
6 |
4, 5 |
nfan |
F/ y ~E. y A == {x | x = y} /\ a = 0 |
7 |
2, 6 |
nfor |
F/ y A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
8 |
|
eqeq2 |
a = y -> (x = a <-> x = y) |
9 |
8 |
abeqd |
a = y -> {x | x = a} == {x | x = y} |
10 |
9 |
eqseq2d |
a = y -> (A == {x | x = a} <-> A == {x | x = y}) |
11 |
|
anl |
a = the A /\ A == {x | x = y} -> a = the A |
12 |
|
theid |
A == {x | x = y} -> the A = y |
13 |
12 |
anwr |
a = the A /\ A == {x | x = y} -> the A = y |
14 |
11, 13 |
eqtrd |
a = the A /\ A == {x | x = y} -> a = y |
15 |
10, 14 |
syl |
a = the A /\ A == {x | x = y} -> (A == {x | x = a} <-> A == {x | x = y}) |
16 |
|
anr |
a = the A /\ A == {x | x = y} -> A == {x | x = y} |
17 |
15, 16 |
mpbird |
a = the A /\ A == {x | x = y} -> A == {x | x = a} |
18 |
17 |
orld |
a = the A /\ A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
19 |
18 |
exp |
a = the A -> A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
20 |
1, 7, 19 |
eexdh |
a = the A -> E. y A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
21 |
20 |
imp |
a = the A /\ E. y A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
22 |
|
anr |
a = the A /\ ~E. y A == {x | x = y} -> ~E. y A == {x | x = y} |
23 |
|
anl |
a = the A /\ ~E. y A == {x | x = y} -> a = the A |
24 |
|
the0 |
~E. y A == {x | x = y} -> the A = 0 |
25 |
24 |
anwr |
a = the A /\ ~E. y A == {x | x = y} -> the A = 0 |
26 |
23, 25 |
eqtrd |
a = the A /\ ~E. y A == {x | x = y} -> a = 0 |
27 |
22, 26 |
iand |
a = the A /\ ~E. y A == {x | x = y} -> ~E. y A == {x | x = y} /\ a = 0 |
28 |
27 |
orrd |
a = the A /\ ~E. y A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
29 |
21, 28 |
casesda |
a = the A -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
30 |
|
eor |
(A == {x | x = a} -> a = the A) -> (~E. y A == {x | x = y} /\ a = 0 -> a = the A) -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 -> a = the A |
31 |
|
theid |
A == {x | x = a} -> the A = a |
32 |
31 |
eqcomd |
A == {x | x = a} -> a = the A |
33 |
30, 32 |
ax_mp |
(~E. y A == {x | x = y} /\ a = 0 -> a = the A) -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 -> a = the A |
34 |
|
anr |
~E. y A == {x | x = y} /\ a = 0 -> a = 0 |
35 |
24 |
eqcomd |
~E. y A == {x | x = y} -> 0 = the A |
36 |
35 |
anwl |
~E. y A == {x | x = y} /\ a = 0 -> 0 = the A |
37 |
34, 36 |
eqtrd |
~E. y A == {x | x = y} /\ a = 0 -> a = the A |
38 |
33, 37 |
ax_mp |
A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 -> a = the A |
39 |
29, 38 |
ibii |
a = the A <-> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |