| Step | Hyp | Ref | Expression |
| 1 |
|
nfv |
F/ y a = the A |
| 2 |
|
nfv |
F/ y A == {x | x = a} |
| 3 |
|
nfex1 |
F/ y E. y A == {x | x = y} |
| 4 |
3 |
nfnot |
F/ y ~E. y A == {x | x = y} |
| 5 |
|
nfv |
F/ y a = 0 |
| 6 |
4, 5 |
nfan |
F/ y ~E. y A == {x | x = y} /\ a = 0 |
| 7 |
2, 6 |
nfor |
F/ y A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
| 8 |
|
eqeq2 |
a = y -> (x = a <-> x = y) |
| 9 |
8 |
abeqd |
a = y -> {x | x = a} == {x | x = y} |
| 10 |
9 |
eqseq2d |
a = y -> (A == {x | x = a} <-> A == {x | x = y}) |
| 11 |
|
anl |
a = the A /\ A == {x | x = y} -> a = the A |
| 12 |
|
theid |
A == {x | x = y} -> the A = y |
| 13 |
12 |
anwr |
a = the A /\ A == {x | x = y} -> the A = y |
| 14 |
11, 13 |
eqtrd |
a = the A /\ A == {x | x = y} -> a = y |
| 15 |
10, 14 |
syl |
a = the A /\ A == {x | x = y} -> (A == {x | x = a} <-> A == {x | x = y}) |
| 16 |
|
anr |
a = the A /\ A == {x | x = y} -> A == {x | x = y} |
| 17 |
15, 16 |
mpbird |
a = the A /\ A == {x | x = y} -> A == {x | x = a} |
| 18 |
17 |
orld |
a = the A /\ A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
| 19 |
18 |
exp |
a = the A -> A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
| 20 |
1, 7, 19 |
eexdh |
a = the A -> E. y A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
| 21 |
20 |
imp |
a = the A /\ E. y A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
| 22 |
|
anr |
a = the A /\ ~E. y A == {x | x = y} -> ~E. y A == {x | x = y} |
| 23 |
|
anl |
a = the A /\ ~E. y A == {x | x = y} -> a = the A |
| 24 |
|
the0 |
~E. y A == {x | x = y} -> the A = 0 |
| 25 |
24 |
anwr |
a = the A /\ ~E. y A == {x | x = y} -> the A = 0 |
| 26 |
23, 25 |
eqtrd |
a = the A /\ ~E. y A == {x | x = y} -> a = 0 |
| 27 |
22, 26 |
iand |
a = the A /\ ~E. y A == {x | x = y} -> ~E. y A == {x | x = y} /\ a = 0 |
| 28 |
27 |
orrd |
a = the A /\ ~E. y A == {x | x = y} -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
| 29 |
21, 28 |
casesda |
a = the A -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |
| 30 |
|
eor |
(A == {x | x = a} -> a = the A) -> (~E. y A == {x | x = y} /\ a = 0 -> a = the A) -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 -> a = the A |
| 31 |
|
theid |
A == {x | x = a} -> the A = a |
| 32 |
31 |
eqcomd |
A == {x | x = a} -> a = the A |
| 33 |
30, 32 |
ax_mp |
(~E. y A == {x | x = y} /\ a = 0 -> a = the A) -> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 -> a = the A |
| 34 |
|
anr |
~E. y A == {x | x = y} /\ a = 0 -> a = 0 |
| 35 |
24 |
eqcomd |
~E. y A == {x | x = y} -> 0 = the A |
| 36 |
35 |
anwl |
~E. y A == {x | x = y} /\ a = 0 -> 0 = the A |
| 37 |
34, 36 |
eqtrd |
~E. y A == {x | x = y} /\ a = 0 -> a = the A |
| 38 |
33, 37 |
ax_mp |
A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 -> a = the A |
| 39 |
29, 38 |
ibii |
a = the A <-> A == {x | x = a} \/ ~E. y A == {x | x = y} /\ a = 0 |