theorem nfthe {x: nat} (A: set x): $ FS/ x A $ > $ FN/ x the A $;
Step | Hyp | Ref | Expression |
1 |
|
eqtheb |
y = the A <-> A == {u | u = y} \/ ~E. v A == {u | u = v} /\ y = 0 |
2 |
|
hyp h |
FS/ x A |
3 |
|
nfsv |
FS/ x {u | u = y} |
4 |
2, 3 |
nfeqs |
F/ x A == {u | u = y} |
5 |
|
nfsv |
FS/ x {u | u = v} |
6 |
2, 5 |
nfeqs |
F/ x A == {u | u = v} |
7 |
6 |
nfex |
F/ x E. v A == {u | u = v} |
8 |
7 |
nfnot |
F/ x ~E. v A == {u | u = v} |
9 |
|
nfv |
F/ x y = 0 |
10 |
8, 9 |
nfan |
F/ x ~E. v A == {u | u = v} /\ y = 0 |
11 |
4, 10 |
nfor |
F/ x A == {u | u = y} \/ ~E. v A == {u | u = v} /\ y = 0 |
12 |
1, 11 |
nfx |
F/ x y = the A |
13 |
12 |
nfnri |
FN/ x the A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)