Theorem nfthe | index | src |

theorem nfthe {x: nat} (A: set x): $ FS/ x A $ > $ FN/ x the A $;
StepHypRefExpression
1 eqtheb
y = the A <-> A == {u | u = y} \/ ~E. v A == {u | u = v} /\ y = 0
2 hyp h
FS/ x A
3 nfsv
FS/ x {u | u = y}
4 2, 3 nfeqs
F/ x A == {u | u = y}
5 nfsv
FS/ x {u | u = v}
6 2, 5 nfeqs
F/ x A == {u | u = v}
7 6 nfex
F/ x E. v A == {u | u = v}
8 7 nfnot
F/ x ~E. v A == {u | u = v}
9 nfv
F/ x y = 0
10 8, 9 nfan
F/ x ~E. v A == {u | u = v} /\ y = 0
11 4, 10 nfor
F/ x A == {u | u = y} \/ ~E. v A == {u | u = v} /\ y = 0
12 1, 11 nfx
F/ x y = the A
13 12 nfnri
FN/ x the A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)