Theorem nfeqs | index | src |

theorem nfeqs {x: nat} (A B: set x):
  $ FS/ x A $ >
  $ FS/ x B $ >
  $ F/ x A == B $;
StepHypRefExpression
1 hyp h1
FS/ x A
2 1 nfel2
F/ x y e. A
3 hyp h2
FS/ x B
4 3 nfel2
F/ x y e. B
5 2, 4 nfbi
F/ x y e. A <-> y e. B
6 5 nfal
F/ x A. y (y e. A <-> y e. B)
7 6 conv eqs
F/ x A == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (ax_8)