Theorem nfnx | index | src |

theorem nfnx {x: nat} (a b: nat x): $ a = b $ > $ FN/ x b $ > $ FN/ x a $;
StepHypRefExpression
1 eqeq2
a = b -> (y = a <-> y = b)
2 hyp h1
a = b
3 1, 2 ax_mp
y = a <-> y = b
4 hyp h2
FN/ x b
5 4 nfeq2
F/ x y = b
6 3, 5 nfx
F/ x y = a
7 6 nfnri
FN/ x a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)