Theorem nfin | index | src |

theorem nfin {x: nat} (A B: set x):
  $ FS/ x A $ >
  $ FS/ x B $ >
  $ FS/ x A i^i B $;
StepHypRefExpression
1 hyp h1
FS/ x A
2 1 nfel2
F/ x y e. A
3 hyp h2
FS/ x B
4 3 nfel2
F/ x y e. B
5 2, 4 nfan
F/ x y e. A /\ y e. B
6 5 nfab
FS/ x {y | y e. A /\ y e. B}
7 6 conv Inter
FS/ x A i^i B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)