Theorem nfab | index | src |

theorem nfab {x y: nat} (p: wff x y): $ F/ x p $ > $ FS/ x {y | p} $;
StepHypRefExpression
1 elab
z e. {y | p} <-> [z / y] p
2 hyp h
F/ x p
3 2 nfsb
F/ x [z / y] p
4 1, 3 nfx
F/ x z e. {y | p}
5 4 nfsri
FS/ x {y | p}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab)