theorem nfab {x y: nat} (p: wff x y): $ F/ x p $ > $ FS/ x {y | p} $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab | z e. {y | p} <-> [z / y] p |
|
| 2 | hyp h | F/ x p |
|
| 3 | 2 | nfsb | F/ x [z / y] p |
| 4 | 1, 3 | nfx | F/ x z e. {y | p} |
| 5 | 4 | nfsri | FS/ x {y | p} |