Theorem nfel2 | index | src |

theorem nfel2 {x: nat} (a: nat) (A: set x): $ FS/ x A $ > $ F/ x a e. A $;
StepHypRefExpression
1 eleq1
y = a -> (y e. A <-> a e. A)
2 1 nfeqd
y = a -> ((F/ x y e. A) <-> (F/ x a e. A))
3 2 eale
A. y (F/ x y e. A) -> (F/ x a e. A)
4 hyp h
FS/ x A
5 4 conv nfs
A. y (F/ x y e. A)
6 3, 5 ax_mp
F/ x a e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)