Theorem nfsx | index | src |

theorem nfsx {x: nat} (A B: set x): $ A == B $ > $ FS/ x B $ > $ FS/ x A $;
StepHypRefExpression
1 eleq2
A == B -> (y e. A <-> y e. B)
2 hyp h1
A == B
3 1, 2 ax_mp
y e. A <-> y e. B
4 hyp h2
FS/ x B
5 4 nfel2
F/ x y e. B
6 3, 5 nfx
F/ x y e. A
7 6 ax_gen
A. y (F/ x y e. A)
8 7 conv nfs
FS/ x A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)