theorem eqthe0d (A: set) (G: wff) {x: nat}:
$ G -> x e. A -> x = 0 $ >
$ G -> the A = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
theid |
A == {y | y = 0} -> the A = 0 |
2 |
|
anr |
G /\ A == {y | y = x} -> A == {y | y = x} |
3 |
|
eqeq2 |
x = 0 -> (y = x <-> y = 0) |
4 |
3 |
abeqd |
x = 0 -> {y | y = x} == {y | y = 0} |
5 |
|
eqeq1 |
y = x -> (y = x <-> x = x) |
6 |
5 |
elabe |
x e. {y | y = x} <-> x = x |
7 |
|
eqid |
x = x |
8 |
6, 7 |
mpbir |
x e. {y | y = x} |
9 |
|
eleq2 |
A == {y | y = x} -> (x e. A <-> x e. {y | y = x}) |
10 |
9 |
anwr |
G /\ A == {y | y = x} -> (x e. A <-> x e. {y | y = x}) |
11 |
8, 10 |
mpbiri |
G /\ A == {y | y = x} -> x e. A |
12 |
|
hyp h |
G -> x e. A -> x = 0 |
13 |
12 |
anwl |
G /\ A == {y | y = x} -> x e. A -> x = 0 |
14 |
11, 13 |
mpd |
G /\ A == {y | y = x} -> x = 0 |
15 |
4, 14 |
syl |
G /\ A == {y | y = x} -> {y | y = x} == {y | y = 0} |
16 |
2, 15 |
eqstrd |
G /\ A == {y | y = x} -> A == {y | y = 0} |
17 |
1, 16 |
syl |
G /\ A == {y | y = x} -> the A = 0 |
18 |
17 |
eexda |
G -> E. x A == {y | y = x} -> the A = 0 |
19 |
|
the0 |
~E. x A == {y | y = x} -> the A = 0 |
20 |
19 |
a1i |
G -> ~E. x A == {y | y = x} -> the A = 0 |
21 |
18, 20 |
casesd |
G -> the A = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)