Theorem eqthe0d | index | src |

theorem eqthe0d (A: set) (G: wff) {x: nat}:
  $ G -> x e. A -> x = 0 $ >
  $ G -> the A = 0 $;
StepHypRefExpression
1 theid
A == {y | y = 0} -> the A = 0
2 anr
G /\ A == {y | y = x} -> A == {y | y = x}
3 eqeq2
x = 0 -> (y = x <-> y = 0)
4 3 abeqd
x = 0 -> {y | y = x} == {y | y = 0}
5 eqeq1
y = x -> (y = x <-> x = x)
6 5 elabe
x e. {y | y = x} <-> x = x
7 eqid
x = x
8 6, 7 mpbir
x e. {y | y = x}
9 eleq2
A == {y | y = x} -> (x e. A <-> x e. {y | y = x})
10 9 anwr
G /\ A == {y | y = x} -> (x e. A <-> x e. {y | y = x})
11 8, 10 mpbiri
G /\ A == {y | y = x} -> x e. A
12 hyp h
G -> x e. A -> x = 0
13 12 anwl
G /\ A == {y | y = x} -> x e. A -> x = 0
14 11, 13 mpd
G /\ A == {y | y = x} -> x = 0
15 4, 14 syl
G /\ A == {y | y = x} -> {y | y = x} == {y | y = 0}
16 2, 15 eqstrd
G /\ A == {y | y = x} -> A == {y | y = 0}
17 1, 16 syl
G /\ A == {y | y = x} -> the A = 0
18 17 eexda
G -> E. x A == {y | y = x} -> the A = 0
19 the0
~E. x A == {y | y = x} -> the A = 0
20 19 a1i
G -> ~E. x A == {y | y = x} -> the A = 0
21 18, 20 casesd
G -> the A = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)