theorem elabe {x: nat} (a: nat) (p: wff x) (q: wff):
$ x = a -> (p <-> q) $ >
$ a e. {x | p} <-> q $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a e. {x | p} <-> [a / x] p) -> ([a / x] p <-> q) -> (a e. {x | p} <-> q) |
2 |
|
elab2 |
a e. {x | p} <-> [a / x] p |
3 |
1, 2 |
ax_mp |
([a / x] p <-> q) -> (a e. {x | p} <-> q) |
4 |
|
hyp e |
x = a -> (p <-> q) |
5 |
4 |
sbe |
[a / x] p <-> q |
6 |
3, 5 |
ax_mp |
a e. {x | p} <-> q |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)