Theorem elab2 | index | src |

theorem elab2 {x: nat} (a: nat x) (p: wff x): $ a e. {x | p} <-> [a / x] p $;
StepHypRefExpression
1 bitr
(a e. {x | p} <-> [a / y] [y / x] p) -> ([a / y] [y / x] p <-> [a / x] p) -> (a e. {x | p} <-> [a / x] p)
2 bitr
(a e. {x | p} <-> a e. {y | [y / x] p}) -> (a e. {y | [y / x] p} <-> [a / y] [y / x] p) -> (a e. {x | p} <-> [a / y] [y / x] p)
3 eleq2
{x | p} == {y | [y / x] p} -> (a e. {x | p} <-> a e. {y | [y / x] p})
4 nfv
F/ y p
5 nfsb1
F/ x [y / x] p
6 sbq
x = y -> (p <-> [y / x] p)
7 4, 5, 6 cbvabh
{x | p} == {y | [y / x] p}
8 3, 7 ax_mp
a e. {x | p} <-> a e. {y | [y / x] p}
9 2, 8 ax_mp
(a e. {y | [y / x] p} <-> [a / y] [y / x] p) -> (a e. {x | p} <-> [a / y] [y / x] p)
10 elab
a e. {y | [y / x] p} <-> [a / y] [y / x] p
11 9, 10 ax_mp
a e. {x | p} <-> [a / y] [y / x] p
12 1, 11 ax_mp
([a / y] [y / x] p <-> [a / x] p) -> (a e. {x | p} <-> [a / x] p)
13 sbco
[a / y] [y / x] p <-> [a / x] p
14 12, 13 ax_mp
a e. {x | p} <-> [a / x] p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)