theorem elab2 {x: nat} (a: nat x) (p: wff x): $ a e. {x | p} <-> [a / x] p $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a e. {x | p} <-> [a / y] [y / x] p) -> ([a / y] [y / x] p <-> [a / x] p) -> (a e. {x | p} <-> [a / x] p) |
2 |
|
bitr |
(a e. {x | p} <-> a e. {y | [y / x] p}) -> (a e. {y | [y / x] p} <-> [a / y] [y / x] p) -> (a e. {x | p} <-> [a / y] [y / x] p) |
3 |
|
eleq2 |
{x | p} == {y | [y / x] p} -> (a e. {x | p} <-> a e. {y | [y / x] p}) |
4 |
|
nfv |
F/ y p |
5 |
|
nfsb1 |
F/ x [y / x] p |
6 |
|
sbq |
x = y -> (p <-> [y / x] p) |
7 |
4, 5, 6 |
cbvabh |
{x | p} == {y | [y / x] p} |
8 |
3, 7 |
ax_mp |
a e. {x | p} <-> a e. {y | [y / x] p} |
9 |
2, 8 |
ax_mp |
(a e. {y | [y / x] p} <-> [a / y] [y / x] p) -> (a e. {x | p} <-> [a / y] [y / x] p) |
10 |
|
elab |
a e. {y | [y / x] p} <-> [a / y] [y / x] p |
11 |
9, 10 |
ax_mp |
a e. {x | p} <-> [a / y] [y / x] p |
12 |
1, 11 |
ax_mp |
([a / y] [y / x] p <-> [a / x] p) -> (a e. {x | p} <-> [a / x] p) |
13 |
|
sbco |
[a / y] [y / x] p <-> [a / x] p |
14 |
12, 13 |
ax_mp |
a e. {x | p} <-> [a / x] p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)