Theorem sbco | index | src |

theorem sbco {x y: nat} (a: nat x) (b: wff x):
  $ [a / y] [y / x] b <-> [a / x] b $;
StepHypRefExpression
1 bitr
([a / y] [y / x] b <-> A. y (y = a -> [y / x] b)) -> (A. y (y = a -> [y / x] b) <-> [a / x] b) -> ([a / y] [y / x] b <-> [a / x] b)
2 dfsb2
[a / y] [y / x] b <-> A. y (y = a -> [y / x] b)
3 1, 2 ax_mp
(A. y (y = a -> [y / x] b) <-> [a / x] b) -> ([a / y] [y / x] b <-> [a / x] b)
4 dfsb2
[y / x] b <-> A. x (x = y -> b)
5 4 imeq2i
y = a -> [y / x] b <-> y = a -> A. x (x = y -> b)
6 5 aleqi
A. y (y = a -> [y / x] b) <-> A. y (y = a -> A. x (x = y -> b))
7 6 conv sb
A. y (y = a -> [y / x] b) <-> [a / x] b
8 3, 7 ax_mp
[a / y] [y / x] b <-> [a / x] b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)