theorem dfsb2 {x: nat} (a: nat) (b: wff x): $ [a / x] b <-> A. x (x = a -> b) $;
Step | Hyp | Ref | Expression |
1 |
|
ax_6 |
E. y y = a |
2 |
|
nfal1 |
F/ y A. y (y = a -> A. x (x = y -> b)) |
3 |
|
nfv |
F/ y A. x (x = a -> b) |
4 |
|
eqtr4 |
x = a -> y = a -> x = y |
5 |
4 |
com12 |
y = a -> x = a -> x = y |
6 |
5 |
imim1d |
y = a -> (x = y -> b) -> x = a -> b |
7 |
6 |
alimd |
y = a -> A. x (x = y -> b) -> A. x (x = a -> b) |
8 |
7 |
a2i |
(y = a -> A. x (x = y -> b)) -> y = a -> A. x (x = a -> b) |
9 |
|
eal |
A. y (y = a -> A. x (x = y -> b)) -> y = a -> A. x (x = y -> b) |
10 |
8, 9 |
syl |
A. y (y = a -> A. x (x = y -> b)) -> y = a -> A. x (x = a -> b) |
11 |
2, 3, 10 |
eexdh |
A. y (y = a -> A. x (x = y -> b)) -> E. y y = a -> A. x (x = a -> b) |
12 |
1, 11 |
mpi |
A. y (y = a -> A. x (x = y -> b)) -> A. x (x = a -> b) |
13 |
|
eqtr |
x = y -> y = a -> x = a |
14 |
13 |
com12 |
y = a -> x = y -> x = a |
15 |
14 |
imim1d |
y = a -> (x = a -> b) -> x = y -> b |
16 |
15 |
alimd |
y = a -> A. x (x = a -> b) -> A. x (x = y -> b) |
17 |
16 |
com12 |
A. x (x = a -> b) -> y = a -> A. x (x = y -> b) |
18 |
17 |
iald |
A. x (x = a -> b) -> A. y (y = a -> A. x (x = y -> b)) |
19 |
12, 18 |
ibii |
A. y (y = a -> A. x (x = y -> b)) <-> A. x (x = a -> b) |
20 |
19 |
conv sb |
[a / x] b <-> A. x (x = a -> b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12)