Theorem sbid | index | src |

theorem sbid {x: nat} (a: wff x): $ [x / x] a <-> a $;
StepHypRefExpression
1 ax_6
E. y y = x
2 nfal1
F/ y A. y (y = x -> A. x (x = y -> a))
3 nfv
F/ y a
4 eal
A. y (y = x -> A. x (x = y -> a)) -> y = x -> A. x (x = y -> a)
5 eqcom
y = x -> x = y
6 eal
A. x (x = y -> a) -> x = y -> a
7 6 com12
x = y -> A. x (x = y -> a) -> a
8 5, 7 rsyl
y = x -> A. x (x = y -> a) -> a
9 8 a2i
(y = x -> A. x (x = y -> a)) -> y = x -> a
10 4, 9 rsyl
A. y (y = x -> A. x (x = y -> a)) -> y = x -> a
11 2, 3, 10 eexdh
A. y (y = x -> A. x (x = y -> a)) -> E. y y = x -> a
12 1, 11 mpi
A. y (y = x -> A. x (x = y -> a)) -> a
13 dfsb2
[y / x] a <-> A. x (x = y -> a)
14 sbq
x = y -> (a <-> [y / x] a)
15 14, 5 syl
y = x -> (a <-> [y / x] a)
16 13, 15 syl6bb
y = x -> (a <-> A. x (x = y -> a))
17 16 bi1d
y = x -> a -> A. x (x = y -> a)
18 17 com12
a -> y = x -> A. x (x = y -> a)
19 18 iald
a -> A. y (y = x -> A. x (x = y -> a))
20 12, 19 ibii
A. y (y = x -> A. x (x = y -> a)) <-> a
21 20 conv sb
[x / x] a <-> a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)