theorem sbid {x: nat} (a: wff x): $ [x / x] a <-> a $;
| Step | Hyp | Ref | Expression |
| 1 |
|
ax_6 |
E. y y = x |
| 2 |
|
nfal1 |
F/ y A. y (y = x -> A. x (x = y -> a)) |
| 3 |
|
nfv |
F/ y a |
| 4 |
|
eal |
A. y (y = x -> A. x (x = y -> a)) -> y = x -> A. x (x = y -> a) |
| 5 |
|
eqcom |
y = x -> x = y |
| 6 |
|
eal |
A. x (x = y -> a) -> x = y -> a |
| 7 |
6 |
com12 |
x = y -> A. x (x = y -> a) -> a |
| 8 |
5, 7 |
rsyl |
y = x -> A. x (x = y -> a) -> a |
| 9 |
8 |
a2i |
(y = x -> A. x (x = y -> a)) -> y = x -> a |
| 10 |
4, 9 |
rsyl |
A. y (y = x -> A. x (x = y -> a)) -> y = x -> a |
| 11 |
2, 3, 10 |
eexdh |
A. y (y = x -> A. x (x = y -> a)) -> E. y y = x -> a |
| 12 |
1, 11 |
mpi |
A. y (y = x -> A. x (x = y -> a)) -> a |
| 13 |
|
dfsb2 |
[y / x] a <-> A. x (x = y -> a) |
| 14 |
|
sbq |
x = y -> (a <-> [y / x] a) |
| 15 |
14, 5 |
syl |
y = x -> (a <-> [y / x] a) |
| 16 |
13, 15 |
syl6bb |
y = x -> (a <-> A. x (x = y -> a)) |
| 17 |
16 |
bi1d |
y = x -> a -> A. x (x = y -> a) |
| 18 |
17 |
com12 |
a -> y = x -> A. x (x = y -> a) |
| 19 |
18 |
iald |
a -> A. y (y = x -> A. x (x = y -> a)) |
| 20 |
12, 19 |
ibii |
A. y (y = x -> A. x (x = y -> a)) <-> a |
| 21 |
20 |
conv sb |
[x / x] a <-> a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12)