theorem sbcom (a b: nat) {x y: nat} (p: wff x y):
$ [a / x] [b / y] p <-> [b / y] [a / x] p $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr |
([a / x] [b / y] p <-> A. x (x = a -> [b / y] p)) -> (A. x (x = a -> [b / y] p) <-> [b / y] [a / x] p) -> ([a / x] [b / y] p <-> [b / y] [a / x] p) |
| 2 |
|
dfsb2 |
[a / x] [b / y] p <-> A. x (x = a -> [b / y] p) |
| 3 |
1, 2 |
ax_mp |
(A. x (x = a -> [b / y] p) <-> [b / y] [a / x] p) -> ([a / x] [b / y] p <-> [b / y] [a / x] p) |
| 4 |
|
bitr4 |
(A. x (x = a -> [b / y] p) <-> A. x (x = a -> A. y (y = b -> p))) ->
([b / y] [a / x] p <-> A. x (x = a -> A. y (y = b -> p))) ->
(A. x (x = a -> [b / y] p) <-> [b / y] [a / x] p) |
| 5 |
|
dfsb2 |
[b / y] p <-> A. y (y = b -> p) |
| 6 |
5 |
raleqi |
A. x (x = a -> [b / y] p) <-> A. x (x = a -> A. y (y = b -> p)) |
| 7 |
4, 6 |
ax_mp |
([b / y] [a / x] p <-> A. x (x = a -> A. y (y = b -> p))) -> (A. x (x = a -> [b / y] p) <-> [b / y] [a / x] p) |
| 8 |
|
bitr |
([b / y] [a / x] p <-> A. y (y = b -> [a / x] p)) ->
(A. y (y = b -> [a / x] p) <-> A. x (x = a -> A. y (y = b -> p))) ->
([b / y] [a / x] p <-> A. x (x = a -> A. y (y = b -> p))) |
| 9 |
|
dfsb2 |
[b / y] [a / x] p <-> A. y (y = b -> [a / x] p) |
| 10 |
8, 9 |
ax_mp |
(A. y (y = b -> [a / x] p) <-> A. x (x = a -> A. y (y = b -> p))) -> ([b / y] [a / x] p <-> A. x (x = a -> A. y (y = b -> p))) |
| 11 |
|
bitr4 |
(A. y (y = b -> [a / x] p) <-> A. y (y = b -> A. x (x = a -> p))) ->
(A. x (x = a -> A. y (y = b -> p)) <-> A. y (y = b -> A. x (x = a -> p))) ->
(A. y (y = b -> [a / x] p) <-> A. x (x = a -> A. y (y = b -> p))) |
| 12 |
|
dfsb2 |
[a / x] p <-> A. x (x = a -> p) |
| 13 |
12 |
raleqi |
A. y (y = b -> [a / x] p) <-> A. y (y = b -> A. x (x = a -> p)) |
| 14 |
11, 13 |
ax_mp |
(A. x (x = a -> A. y (y = b -> p)) <-> A. y (y = b -> A. x (x = a -> p))) -> (A. y (y = b -> [a / x] p) <-> A. x (x = a -> A. y (y = b -> p))) |
| 15 |
|
ralcomb |
A. x (x = a -> A. y (y = b -> p)) <-> A. y (y = b -> A. x (x = a -> p)) |
| 16 |
14, 15 |
ax_mp |
A. y (y = b -> [a / x] p) <-> A. x (x = a -> A. y (y = b -> p)) |
| 17 |
10, 16 |
ax_mp |
[b / y] [a / x] p <-> A. x (x = a -> A. y (y = b -> p)) |
| 18 |
7, 17 |
ax_mp |
A. x (x = a -> [b / y] p) <-> [b / y] [a / x] p |
| 19 |
3, 18 |
ax_mp |
[a / x] [b / y] p <-> [b / y] [a / x] p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12)