Theorem cbvabh | index | src |

theorem cbvabh {x y: nat} (p q: wff x y):
  $ F/ y p $ >
  $ F/ x q $ >
  $ x = y -> (p <-> q) $ >
  $ {x | p} == {y | q} $;
StepHypRefExpression
1 elab
z e. {x | p} <-> [z / x] p
2 elab
z e. {y | q} <-> [z / y] q
3 hyp h1
F/ y p
4 hyp h2
F/ x q
5 hyp e
x = y -> (p <-> q)
6 3, 4, 5 cbvsbh
[z / x] p <-> [z / y] q
7 1, 2, 6 bitr4gi
z e. {x | p} <-> z e. {y | q}
8 7 eqri
{x | p} == {y | q}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab)