theorem subleid (a b: nat): $ a - b <= a $;
Step | Hyp | Ref | Expression |
1 |
|
leaddid1 |
a - b <= a - b + b |
2 |
|
npcan |
b <= a -> a - b + b = a |
3 |
2 |
leeq2d |
b <= a -> (a - b <= a - b + b <-> a - b <= a) |
4 |
1, 3 |
mpbii |
b <= a -> a - b <= a |
5 |
|
le01 |
0 <= a |
6 |
|
nlesubeq0 |
~b <= a -> a - b = 0 |
7 |
6 |
leeq1d |
~b <= a -> (a - b <= a <-> 0 <= a) |
8 |
5, 7 |
mpbiri |
~b <= a -> a - b <= a |
9 |
4, 8 |
cases |
a - b <= a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)