Theorem subleid | index | src |

theorem subleid (a b: nat): $ a - b <= a $;
StepHypRefExpression
1 leaddid1
a - b <= a - b + b
2 npcan
b <= a -> a - b + b = a
3 2 leeq2d
b <= a -> (a - b <= a - b + b <-> a - b <= a)
4 1, 3 mpbii
b <= a -> a - b <= a
5 le01
0 <= a
6 nlesubeq0
~b <= a -> a - b = 0
7 6 leeq1d
~b <= a -> (a - b <= a <-> 0 <= a)
8 5, 7 mpbiri
~b <= a -> a - b <= a
9 4, 8 cases
a - b <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, peano5, addeq, add0, addS)