theorem subltid (a b: nat): $ 0 < a /\ 0 < b -> a - b < a $;
Step | Hyp | Ref | Expression |
1 |
|
ltadd1 |
a - b < a <-> a - b + b < a + b |
2 |
|
add0 |
a + 0 = a |
3 |
|
npcan |
b <= a -> a - b + b = a |
4 |
2, 3 |
syl6eqr |
b <= a -> a - b + b = a + 0 |
5 |
4 |
lteq1d |
b <= a -> (a - b + b < a + b <-> a + 0 < a + b) |
6 |
5 |
anwr |
0 < a /\ 0 < b /\ b <= a -> (a - b + b < a + b <-> a + 0 < a + b) |
7 |
|
ltadd2 |
0 < b <-> a + 0 < a + b |
8 |
|
anlr |
0 < a /\ 0 < b /\ b <= a -> 0 < b |
9 |
7, 8 |
sylib |
0 < a /\ 0 < b /\ b <= a -> a + 0 < a + b |
10 |
6, 9 |
mpbird |
0 < a /\ 0 < b /\ b <= a -> a - b + b < a + b |
11 |
1, 10 |
sylibr |
0 < a /\ 0 < b /\ b <= a -> a - b < a |
12 |
|
nlesubeq0 |
~b <= a -> a - b = 0 |
13 |
12 |
lteq1d |
~b <= a -> (a - b < a <-> 0 < a) |
14 |
13 |
anwr |
0 < a /\ 0 < b /\ ~b <= a -> (a - b < a <-> 0 < a) |
15 |
|
anll |
0 < a /\ 0 < b /\ ~b <= a -> 0 < a |
16 |
14, 15 |
mpbird |
0 < a /\ 0 < b /\ ~b <= a -> a - b < a |
17 |
11, 16 |
casesda |
0 < a /\ 0 < b -> a - b < a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)