theorem subltid (a b: nat): $ 0 < a /\ 0 < b -> a - b < a $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | ltadd1 | a - b < a <-> a - b + b < a + b | 
        
          | 2 |  | add0 | a + 0 = a | 
        
          | 3 |  | npcan | b <= a -> a - b + b = a | 
        
          | 4 | 2, 3 | syl6eqr | b <= a -> a - b + b = a + 0 | 
        
          | 5 | 4 | lteq1d | b <= a -> (a - b + b < a + b <-> a + 0 < a + b) | 
        
          | 6 | 5 | anwr | 0 < a /\ 0 < b /\ b <= a -> (a - b + b < a + b <-> a + 0 < a + b) | 
        
          | 7 |  | ltadd2 | 0 < b <-> a + 0 < a + b | 
        
          | 8 |  | anlr | 0 < a /\ 0 < b /\ b <= a -> 0 < b | 
        
          | 9 | 7, 8 | sylib | 0 < a /\ 0 < b /\ b <= a -> a + 0 < a + b | 
        
          | 10 | 6, 9 | mpbird | 0 < a /\ 0 < b /\ b <= a -> a - b + b < a + b | 
        
          | 11 | 1, 10 | sylibr | 0 < a /\ 0 < b /\ b <= a -> a - b < a | 
        
          | 12 |  | nlesubeq0 | ~b <= a -> a - b = 0 | 
        
          | 13 | 12 | lteq1d | ~b <= a -> (a - b < a <-> 0 < a) | 
        
          | 14 | 13 | anwr | 0 < a /\ 0 < b /\ ~b <= a -> (a - b < a <-> 0 < a) | 
        
          | 15 |  | anll | 0 < a /\ 0 < b /\ ~b <= a -> 0 < a | 
        
          | 16 | 14, 15 | mpbird | 0 < a /\ 0 < b /\ ~b <= a -> a - b < a | 
        
          | 17 | 11, 16 | casesda | 0 < a /\ 0 < b -> a - b < a | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      peano5,
      addeq,
      add0,
      addS)