Theorem mincom | index | src |

theorem mincom (a b: nat): $ min a b = min b a $;
StepHypRefExpression
1 ifpos
a < b -> if (a < b) a b = a
2 1 conv min
a < b -> min a b = a
3 ifneg
~b < a -> if (b < a) b a = a
4 3 conv min
~b < a -> min b a = a
5 ltnlt
a < b -> ~b < a
6 4, 5 syl
a < b -> min b a = a
7 2, 6 eqtr4d
a < b -> min a b = min b a
8 ifneg
~a < b -> if (a < b) a b = b
9 8 conv min
~a < b -> min a b = b
10 lenlt
b <= a <-> ~a < b
11 eqmin1
b <= a -> min b a = b
12 10, 11 sylbir
~a < b -> min b a = b
13 9, 12 eqtr4d
~a < b -> min a b = min b a
14 7, 13 cases
min a b = min b a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)