theorem ifeq3d (_G p: wff) (a _b1 _b2: nat): $ _G -> _b1 = _b2 $ > $ _G -> if p a _b1 = if p a _b2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd | _G -> (p <-> p) |
|
2 | eqidd | _G -> a = a |
|
3 | hyp _h | _G -> _b1 = _b2 |
|
4 | 1, 2, 3 | ifeqd | _G -> if p a _b1 = if p a _b2 |