theorem ifeqd (_G _p1 _p2: wff) (_a1 _a2 _b1 _b2: nat):
$ _G -> (_p1 <-> _p2) $ >
$ _G -> _a1 = _a2 $ >
$ _G -> _b1 = _b2 $ >
$ _G -> if _p1 _a1 _b1 = if _p2 _a2 _b2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _ph |
_G -> (_p1 <-> _p2) |
2 |
|
eqidd |
_G -> n = n |
3 |
|
hyp _ah |
_G -> _a1 = _a2 |
4 |
2, 3 |
eqeqd |
_G -> (n = _a1 <-> n = _a2) |
5 |
|
hyp _bh |
_G -> _b1 = _b2 |
6 |
2, 5 |
eqeqd |
_G -> (n = _b1 <-> n = _b2) |
7 |
1, 4, 6 |
ifpeqd |
_G -> (ifp _p1 (n = _a1) (n = _b1) <-> ifp _p2 (n = _a2) (n = _b2)) |
8 |
7 |
abeqd |
_G -> {n | ifp _p1 (n = _a1) (n = _b1)} == {n | ifp _p2 (n = _a2) (n = _b2)} |
9 |
8 |
theeqd |
_G -> the {n | ifp _p1 (n = _a1) (n = _b1)} = the {n | ifp _p2 (n = _a2) (n = _b2)} |
10 |
9 |
conv if |
_G -> if _p1 _a1 _b1 = if _p2 _a2 _b2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)