Theorem ifeqd | index | src |

theorem ifeqd (_G _p1 _p2: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> (_p1 <-> _p2) $ >
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> if _p1 _a1 _b1 = if _p2 _a2 _b2 $;
StepHypRefExpression
1 hyp _ph
_G -> (_p1 <-> _p2)
2 eqidd
_G -> n = n
3 hyp _ah
_G -> _a1 = _a2
4 2, 3 eqeqd
_G -> (n = _a1 <-> n = _a2)
5 hyp _bh
_G -> _b1 = _b2
6 2, 5 eqeqd
_G -> (n = _b1 <-> n = _b2)
7 1, 4, 6 ifpeqd
_G -> (ifp _p1 (n = _a1) (n = _b1) <-> ifp _p2 (n = _a2) (n = _b2))
8 7 abeqd
_G -> {n | ifp _p1 (n = _a1) (n = _b1)} == {n | ifp _p2 (n = _a2) (n = _b2)}
9 8 theeqd
_G -> the {n | ifp _p1 (n = _a1) (n = _b1)} = the {n | ifp _p2 (n = _a2) (n = _b2)}
10 9 conv if
_G -> if _p1 _a1 _b1 = if _p2 _a2 _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)