Theorem theeqd | index | src |

theorem theeqd (G: wff) (A B: set): $ G -> A == B $ > $ G -> the A = the B $;
StepHypRefExpression
1 theid
A == {x | x = y} -> the A = y
2 1 anwr
G /\ A == {x | x = y} -> the A = y
3 theid
B == {x | x = y} -> the B = y
4 eqstr3
A == B -> A == {x | x = y} -> B == {x | x = y}
5 hyp h
G -> A == B
6 4, 5 syl
G -> A == {x | x = y} -> B == {x | x = y}
7 6 imp
G /\ A == {x | x = y} -> B == {x | x = y}
8 3, 7 syl
G /\ A == {x | x = y} -> the B = y
9 2, 8 eqtr4d
G /\ A == {x | x = y} -> the A = the B
10 9 eexda
G -> E. y A == {x | x = y} -> the A = the B
11 the0
~E. y A == {x | x = y} -> the A = 0
12 11 anwr
G /\ ~E. y A == {x | x = y} -> the A = 0
13 the0
~E. y B == {x | x = y} -> the B = 0
14 5 eqseq1d
G -> (A == {x | x = y} <-> B == {x | x = y})
15 14 exeqd
G -> (E. y A == {x | x = y} <-> E. y B == {x | x = y})
16 15 noteqd
G -> (~E. y A == {x | x = y} <-> ~E. y B == {x | x = y})
17 16 impbi
G /\ ~E. y A == {x | x = y} -> ~E. y B == {x | x = y}
18 13, 17 syl
G /\ ~E. y A == {x | x = y} -> the B = 0
19 12, 18 eqtr4d
G /\ ~E. y A == {x | x = y} -> the A = the B
20 19 exp
G -> ~E. y A == {x | x = y} -> the A = the B
21 10, 20 casesd
G -> the A = the B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8), axs_the (theid, the0)