theorem theeqd (G: wff) (A B: set): $ G -> A == B $ > $ G -> the A = the B $;
Step | Hyp | Ref | Expression |
1 |
|
theid |
A == {x | x = y} -> the A = y |
2 |
1 |
anwr |
G /\ A == {x | x = y} -> the A = y |
3 |
|
theid |
B == {x | x = y} -> the B = y |
4 |
|
eqstr3 |
A == B -> A == {x | x = y} -> B == {x | x = y} |
5 |
|
hyp h |
G -> A == B |
6 |
4, 5 |
syl |
G -> A == {x | x = y} -> B == {x | x = y} |
7 |
6 |
imp |
G /\ A == {x | x = y} -> B == {x | x = y} |
8 |
3, 7 |
syl |
G /\ A == {x | x = y} -> the B = y |
9 |
2, 8 |
eqtr4d |
G /\ A == {x | x = y} -> the A = the B |
10 |
9 |
eexda |
G -> E. y A == {x | x = y} -> the A = the B |
11 |
|
the0 |
~E. y A == {x | x = y} -> the A = 0 |
12 |
11 |
anwr |
G /\ ~E. y A == {x | x = y} -> the A = 0 |
13 |
|
the0 |
~E. y B == {x | x = y} -> the B = 0 |
14 |
5 |
eqseq1d |
G -> (A == {x | x = y} <-> B == {x | x = y}) |
15 |
14 |
exeqd |
G -> (E. y A == {x | x = y} <-> E. y B == {x | x = y}) |
16 |
15 |
noteqd |
G -> (~E. y A == {x | x = y} <-> ~E. y B == {x | x = y}) |
17 |
16 |
impbi |
G /\ ~E. y A == {x | x = y} -> ~E. y B == {x | x = y} |
18 |
13, 17 |
syl |
G /\ ~E. y A == {x | x = y} -> the B = 0 |
19 |
12, 18 |
eqtr4d |
G /\ ~E. y A == {x | x = y} -> the A = the B |
20 |
19 |
exp |
G -> ~E. y A == {x | x = y} -> the A = the B |
21 |
10, 20 |
casesd |
G -> the A = the B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12),
axs_set
(ax_8),
axs_the
(theid,
the0)