Theorem ifeq | index | src |

theorem ifeq (_p1 _p2: wff) (_a1 _a2 _b1 _b2: nat):
  $ (_p1 <-> _p2) ->
    _a1 = _a2 ->
    _b1 = _b2 ->
    if _p1 _a1 _b1 = if _p2 _a2 _b2 $;
StepHypRefExpression
1 anl
(_p1 <-> _p2) /\ _a1 = _a2 -> (_p1 <-> _p2)
2 1 anwl
(_p1 <-> _p2) /\ _a1 = _a2 /\ _b1 = _b2 -> (_p1 <-> _p2)
3 anr
(_p1 <-> _p2) /\ _a1 = _a2 -> _a1 = _a2
4 3 anwl
(_p1 <-> _p2) /\ _a1 = _a2 /\ _b1 = _b2 -> _a1 = _a2
5 anr
(_p1 <-> _p2) /\ _a1 = _a2 /\ _b1 = _b2 -> _b1 = _b2
6 2, 4, 5 ifeqd
(_p1 <-> _p2) /\ _a1 = _a2 /\ _b1 = _b2 -> if _p1 _a1 _b1 = if _p2 _a2 _b2
7 6 exp
(_p1 <-> _p2) /\ _a1 = _a2 -> _b1 = _b2 -> if _p1 _a1 _b1 = if _p2 _a2 _b2
8 7 exp
(_p1 <-> _p2) -> _a1 = _a2 -> _b1 = _b2 -> if _p1 _a1 _b1 = if _p2 _a2 _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)