theorem ifeq1d (_G _p1 _p2: wff) (a b: nat): $ _G -> (_p1 <-> _p2) $ > $ _G -> if _p1 a b = if _p2 a b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> (_p1 <-> _p2) |
|
2 | eqidd | _G -> a = a |
|
3 | eqidd | _G -> b = b |
|
4 | 1, 2, 3 | ifeqd | _G -> if _p1 a b = if _p2 a b |