theorem lesubeq0 (a b: nat): $ a <= b <-> a - b = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
leloe |
a <= b <-> a < b \/ a = b |
2 |
|
eor |
(a < b -> a - b = 0) -> (a = b -> a - b = 0) -> a < b \/ a = b -> a - b = 0 |
3 |
|
ltsubeq0 |
a < b -> a - b = 0 |
4 |
2, 3 |
ax_mp |
(a = b -> a - b = 0) -> a < b \/ a = b -> a - b = 0 |
5 |
|
subid |
b - b = 0 |
6 |
|
subeq1 |
a = b -> a - b = b - b |
7 |
5, 6 |
syl6eq |
a = b -> a - b = 0 |
8 |
4, 7 |
ax_mp |
a < b \/ a = b -> a - b = 0 |
9 |
1, 8 |
sylbi |
a <= b -> a - b = 0 |
10 |
|
contra |
(~a <= b -> a <= b) -> a <= b |
11 |
|
eqle |
a = b -> a <= b |
12 |
|
npcan |
b <= a -> a - b + b = a |
13 |
|
leorle |
a <= b \/ b <= a |
14 |
13 |
conv or |
~a <= b -> b <= a |
15 |
14 |
anwr |
a - b = 0 /\ ~a <= b -> b <= a |
16 |
12, 15 |
syl |
a - b = 0 /\ ~a <= b -> a - b + b = a |
17 |
|
add01 |
0 + b = b |
18 |
|
addeq1 |
a - b = 0 -> a - b + b = 0 + b |
19 |
18 |
anwl |
a - b = 0 /\ ~a <= b -> a - b + b = 0 + b |
20 |
17, 19 |
syl6eq |
a - b = 0 /\ ~a <= b -> a - b + b = b |
21 |
16, 20 |
eqtr3d |
a - b = 0 /\ ~a <= b -> a = b |
22 |
11, 21 |
syl |
a - b = 0 /\ ~a <= b -> a <= b |
23 |
10, 22 |
syla |
a - b = 0 -> a <= b |
24 |
9, 23 |
ibii |
a <= b <-> a - b = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)